Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag ; 126: 231-238, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774583

RESUMO

A large amount of waste printed circuit boards (WPCBs) that contain valuable metals, namely gold and copper, are produced annually. WPCBs are constituted by a multi-layer structure reinforced by a brominated epoxy resin (BER), which is very difficult to separate into the metallic and non-metallic components. The main aim of this work was to evaluate the ability of microwave for assisting in the delamination of WPCBs by organic swelling of the BER. Additionally, its performance was compared with other strategies (thermostatic and ultrasonic baths) previously described in the literature. Firstly, a library of solvents [dimethyl formamide (DMF), dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), cyclohexanone (CH), γ-butyrolactone (GBL), tetrahydrofurfuryl alcohol (TFA) and dimethyl malonate (DM)] was selected based on the calculation of Hansen solubility parameters plus others exclusion parameters and their performance to detach all components of WPCBs (25 mm2) was tested by microwave (200 °C for 10 min), thermostatic (153 °C for 10 min) and ultrasonic (60 °C for 25 h) baths. Microwave showed to be the most efficient approach and the delamination order for WPCBs was: NMP > DMSO >DMF > DMAc. Subsequent optimization of key parameters (dimensions of WPCBs and reaction time) were obtained: dimensions of 225 mm2 using NMP (solid/liquid ratio of 300 g/L) at 200 °C with 2 cycles of 10 min. In conclusion, microwave-assisted swelling revealed to be more efficient and faster process to delaminate WPCBs into metallic and non-metallic components, which are important advantages when envisaging a future industrial waste management implementation.


Assuntos
Resíduo Eletrônico , Resinas Epóxi , Micro-Ondas , Reciclagem , Solventes
2.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875176

RESUMO

Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium-harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17-30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17-30 on macrophages, which may be useful under other conditions in which macrophage activation is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA